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LIQUID CRYSTALS, 1989, VOL. 6, No. 6, 709-716 

Analysis of shear flow alignment of nematic liquid crystals at low 
shear stress based on catastrophe theory 

by G. DERFEL 
Institute of Physics, Technical University of t o d i ,  93-005 t o d i ,  Poland 

(Received 7 March 1989; accepted 24 July 1989) 

The low stress shear flow alignment of a nematic liquid crystal in the presence 
of strong anchoring at the boundaries is analysed. Layers with pretilted director 
orientation are taken into account. Two kinds of symmetric deformations are 
assumed. They differ in the director distribution in the vicinity of the boundaries. 
The analysis is carried out using an expansion of the free energy of the layer in 
powers of the maximum deformation angle. The results have qualitative character. 
The condition for the threshold behaviour and the stability of the solutions are 
discussed. The deformation may develop continuously or discontinuously. The 
transition between two kinds of deformation is predicted. The facts already known 
are confirmed and supplemented. 

1. Introduction 
The influence of flow upon the alignment of nematic liquid crystals is well known. 

It has been applied in numerous viscometric experiments [l-31, and explained in terms 
of continuum theory [4-61. In this paper, the simple shear flow of a nematic is 
considered in the presence of elastic effects due to strong anchoring of the director on 
the boundary plates. The director orientation in the mid-plane of the layer is sought 
and the onset of flow orientation is analysed. The analysis is restricted to steady state 
deformations of the nematic for which a3/ct2 > 0. The variety of the possible sol- 
utions, which stems from the competition between solid surfaces and flow, is inves- 
tigated by means of method applied in a previous paper [7] to field effects in nematics. 
It is based on an analysis of a truncated Taylor expansion of the free energy of the 
system. The order of the truncated series is determined by application of theorems 
from catastrophe theory. 

Catastrophe theory predicts the number and kind of critical points of the function 
considered i.e. the points at which the first derivative vanished. The behaviour of the 
system depends on the degeneracy of the critical point, i.e. the number of the sucessive 
higher derivatives which are zero at this point. The most interesting phenomena occur 
in the vicinity of the degenerate, critical point. Thresholds or discontinuities are the 
characteristic features of this behaviour. In this paper, the so-called cusp catastrophe 
is used, its properties were briefly described earlier [7]. In 92, this catastrophe is applied 
to the problem of shear flow alignment, the results are presented in 93 and discussed 
in 94. 

2. Method 
The geometry of the system considered is shown in figure 1. The nematic is 

confined between two infinite parallel plates a distance d apart. It is characterized by 
Leslie viscosity coefficients a, and a),  Miqsowicz viscosity coefficients q2 and elastic 
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Figure 1 .  The definition of the angles describing the geometry of the sheared nematic layer 
for two types of deformation. 

constants k , ,  and k33.  The analysis is restricted to the case a3/~12 > 0. The director is 
oriented on both boundaries in one direction with a preliminary tilt 8,. (The angles 
are counted positive for anticlockwise rotation.) Under the action of the constant 
shear stress t, one of the plates moves with respect to the other and the director field 
is deformed. It can be assumed that the director remains in the shear plane zy; its 
components are n, = 0, n, = cosB(z), nZ = sin@), where 8(z) = 8, + ( ( 2 ) .  The 
symmetrical shape of the ( ( z )  function proposed by Leslie 141 is assumed. For small 
deformations, the function { ( z )  can be approximated by the first term of its Fourier 
expansion: 

( (z)  = trn cos(nz/d). (1) 

The torque exerted on the director consists of the elastic part and the viscous part. 
The distortion of the director field is connected with the free energy density 

8 = ~elast, ,  + ~ v l s C 0 " s ;  (2) 

= (1 /2)k3, [ 1 - K C O S ~  (dO/d~)~ (3) 

here Re,,,,,, is given by 

where K = 1 - kl  , / k j 3 .  &yIscous can be obtained by integration of the viscous torque 
per unit volume 

CI, cos2 8 - a2 sin2 6 
yz - (a2 + a,)sin2 8 

z do, ~ V I S C 0 " S  - (4) 

where y, = q2 - a, - a3 according to Parodi relation, and the small contribution of 
the a,  coefficient has been neglected. Using equations (1) to (5) we can calculate the 
free energy per unit area of the layer, G. For this purpose the free energy density is 
first expanded in a Taylor series of trn in the vicinity of 5, = 0, and then integrated. 
The resulting expression has the form 

G = a0 + a,(, 4- 4 5 :  + ~ 3 T i  + + O(5). (6) 
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Low stress shear flow alignment in nematics 71 I 

The term a, is unimportant, as it can be removed by a suitable choice of the energy 
zero. The coefficients a,  . . . a, are given by 

sin2 el), 

(S  + I)(r - s)sin28, 
n2k33 { 1 - Kcos2 8, - t a2 = - 

Y2 4d 

2nk33 (l.SKsin28, - 2t (S + I)(r - $1 [c0s281 + (s + 1) sin2 28, I> 
v2 Y 

a3 = - 9d 

sin 28, (s + I)(r - s) 
v2 

a4 = - n2k33 (Kcos28, + t 
16d 

3(s + l)cos8, 1 . Q  + 1)2 sin2 28, x [l - - 
Y v2 

where the reduced quantities s = cr3/a2 and r = v2/cr2, and q = r - (s + 1) sin2 8, 
have been introduced. The reduced shear stress t is defined by 

t = T/Zo, (1 1) 

where T ,  = k33n2/d2. The critical point at <, = 0 (for the non-trivial case of s > 0 
and t # 0)  obtains if tg 8, = k Js. This point can be, at most, twofold degenerate, 
as a4 is the first coefficient which cannot be lead to zero by any choice of material 
parameters found for real liquid crystals. According to the theorems of catastrophe 
theory, the expansion of the energy G can be limited to fourth degree and the system 
is qualitatively described by the cusp catastrophe. The behaviour of the director in the 
layer can be analysed by a variation of the parameters. Here, the reduced shear stress 
is varied, whereas the other parameters are fixed. The positive values of t are con- 
sidered and since the surface tilt angle covers the range from - n/2 to n/2, all possible 
situations are taken into account. In particular a2 = 0 if t takes a critical value 

(1 + s - K ) ( s  - r) 
2Js(l + s) t, = 

For typical material constants: s = 0-01, r = -0.2,  K = 0.3, k33 = 10-”N and 
d = lO-’m, the absolute value of t, is about 0.7N/m2. 

The extremes of G are calculated from the minimalization condition for some 
distinct cases. The existence of extremes and their disposition is predicted properly in 
the vicinity of the critical points, whereas the numerical values of 4, are only 
approximate. 

3. Results 
3.1. Threshold behaviour 

The critical points can be achieved if a, = 0; for t # 0, this is possible if 
tg8, = +Js or if tg 8, = -4s. In the former cases, a2 remains different from zero 
for any positive t .  It means that there is always an energy minimum at t,,, = 0. 
Therefore the orientation at the angle 8, = artcanJs, denoted by do, is stable and 
uniform throughout the sample. In the latter case, when 8, = -8,, there exists a 
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712 G. Derfel 

threshold stress t, given by equation (12). Above this value deformation occurs, 
usually discontinuously. Two types of deformation can be distinguished and they are 
shown schematically in figure 1.  On the basis of the torque equation for t --f co, we 
can relate type 1 to the high stress flow alignment angle 8, and type 2 to the angle 
8, - n. If a, is negative at the threshold, which can be expressed by 

(13) 
r + 3s + (4 - r)s2 + s’ 

r + (3  + 2r)s - 2s2 
K <  ’ 

then the deformation angle is positive, (see figure 3c); this corresponds to type 1. In 
the opposite case, type 2 is realized (see figure 3(a)) .  If u3 = 0, both types of 
deformation are equally probable and the deformation develops continuously, as only 
positive values of a4 occur at the threshold for real nematics (see figure 3 (b)). 

3.2. Thresholdless behaviour 
If tg2 8, # s, the coefficient a ,  vanishes only for t = 0 and this critical point is 

non-degenerate. Therefore the behaviour of the system in the vicinity of t = 0 is 
properly described by the Taylor expansion of G truncated at the quadratic term. 
From the minimalization condition, we obtain the expression 

- -  
2 0  0,s t 

Figure 2. The initial behaviour of the orientation angle 8, + 5, calculated for different 
surface tilt angles 8, ,  k 3 3 / k l l  = 1.2, s = 0.01, r = -0.2. 
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Low stress shear flow alignment in nematics 713 

and its derivative with respect to t at t = 0 is equal to 

(15) 
GI = ~(SCOS’ 8, - sin2 8,)  
dt ,=0 n(1 - Kcos28,)[(s + l)sin28, - r]’ 

it is positive if 

-arctan Js < 8, < arctan Js. (16) 
The deformation angle increases according to deformation of type 1. In the opposite 
case, taking place if 

arctan Js < -8, or arctan Js > e l ,  (17) 
the deformation angle is negative. This corresponds to type I for B0 < 8, < n/2 and 
to type 2 for - n/2 < 8, < - 8,. 

These results are gathered in figures 2 and 3. The curves approximate well to the 
real t,(t) functions, the closer to the critical point are the parameters of the system. 
Figure 2 shows the initial tendencies of the t,(t) dependence for the whole range of 
8, ; they are similar for any sign of a3. The details of the behaviour in the vicinity of 
the critical point are shown in figure 3. 

e,=o,= 0.1 I 

‘C 1 I tc I 
1 0  0.5 0 0.3 

t 

Figure 3. The director orientation 0, + 5, as a function of the reduced stress t .  r = - 0.2; 

k33/k,, = 1.2, a3 < 0. The values of 0, are indicated. Full line-minima, dotted line 
-maxima, dashed line-unavailable minima. The non-essential solutions are omitted 
for clarity. 

(a)  s = 0.01, k33/k,, = 1.2, > 0; (b)  s = 0.06, k33/kll = 1.1, a3 = 0; ( c )  s = 0.1, 

3.3. Transition between two types of deformation 
It is evident from figure 2 ,  that the type of deformation results from the relation 

between 8, and - B0 = - arctan Js. In typical experiments on shear flow alignment, 
the homeotropic or planar surface orientation was assured and sufficiently high stress 
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714 G. Derfel 

was applied to the layer ([3], [8]). In these situations, type 1 of deformation is realized 
for arbitrary values of the material constants. The orientation in the middle of the 
layer is determined by B0 and varies smoothly with temperature. There are however 
such values of 0, , which may be taken by - arctan48 during variation of temperature. 
A rapid change of the director distribution may take place in such a case, due to the 
transition from one type of deformation to another. The occurrence of this effect can 
be investigated by an analysis of the trajectories on the control plane (see [7]). If the 
trajectory intersects the bifurcation set twice, the discontinuity takes place in the 
second point of the intersection. Figure 4 shows some examples of the trajectories 
corresponding to the change of stress at constant temperature (lines AE and BF), and 
to the change of temperature at constant stress (lines CD and EF). The parameters 
for 4-methoxybenzylidene-4'-n-butylaniline (MBBA) taken from [9] and [lo], and the 
surface tilt 0, = - 0.18 are used. The transition takes place if the path BDC or similar 
is realized. Therefore the deformation should be induced at high temperature and then 
the layer should be cooled at moderate stress. We may suppose that the rapid change 
of the director profile is accompanied by a discontinuity in the temperature depen- 
dence of the apparent viscosity. Other transitions of this kind are possible if only the 
trajectory leaves the area between the branches of the bifurcation set. 

5 

a 

0 

-5 

-5 0 5 
b 

Figure 4. The trajectories corresponding to the change of stress (AE, T = 20°C, and BF, 
T = 42"C), and to the change of temperature (CD, t = 3, and EF, t = 16) for MBBA, 
0, = -0.18. The arrows indicate the increase of the quantity varied. 
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4. Discussion 
The results obtained in the previous section provide a view of the development of 

flow alignment in nematic liquid crystals. They agree with results found by Currie and 
MacSithigh in [5] and [6] and extend some of their statements. The calculations were 
performed without restrictions on the values of the elastic constants. This gives a more 
detailed value for the threshold (see equation (12)). Two types of deformations, 
denoted by 1 and 2, are distinguished in a different manner to that in [6]. It is shown, 
that, depending on the material constants of a nematic, the sign of a3 (t,) and therefore 
the type of deformation is determined. Typical parameters, for instance those 
measured €or MBBA, correspond to the behaviour shown in figure 3a. Currie and 
MacSithigh [6] pointed out that some symmetrical distributions of the director lose 
their stability. This is concerned with the undeformed state of the layer aligned at an 
angle - 6,, which became unstable above a critical stress, and the layer with surface 
tilt 8, slightly below - 8,. It follows from considerations of 93, that discontinuous 
transitions to the stable deformed configurations occur in such situations. The jumps 
take place at t = t, if 6 ,  = - B 0 ,  and at t < t, if 8 ,  is close to -B0, the latter case 
is realized not only for 8, < -6,, if a3 > 0, but also for 6 ,  > -6, if a3 < 0. 

Two significant approximations were employed for the calculations presented in 
this paper. The deformation was described by only its first Fourier component and 
the free energy power series was truncated at fourth degree. Approximations of this 
type are an inherent feature of the method applied. They allow us to recognize the 
nature of the critical point. Hence the correct picture of the behaviour of the system 
in the vicinity of this point can be obtained. The limitations placed on the results 
because of the approximations relate to the numerical values, not to the qualitative 
features. The parameters which determine the critical point are strictly known; other 
numerical values are only approximate. The data in figures 2 and 3 have only 
illustrative worth. In addition the range of 6 , ,  for which the discontinuities take place, 
cannot be strictly determined. However the tendency of the t,(t) dependence is 
presented properly, and allows us to predict the type of solution. This also concerns 
the transitions described in 53.3. The detailed values of the stress and the temperature, 
at which the jump occurs, are not obtainable. The results can be compared with those 
found from the numerical solution of the Euler-Lagrange equation [ I  I]. The numeri- 
cally calculated director distribution is sinusoidal to within an accuracy of several 
percent only if the deformation is far from saturation. The shape of the t,(t) 
dependence is the same as in figure 3, but the proportions between various parts of 
the curves may be different. In addition a rapid change in the apparent viscosity due 
to the transition between two types of deformation is found. Thus the qualitative 
features of the behaviour obtained in the approach presented are confirmed. For the 
class of nematic liquid crystals characterized by s < 0, the non-degenerate critical 
point takes place at  t = 0. Only the low stress deformations are recognizable. The 
angle 5 ,  takes negative values for any 6 , ,  in agreement with [12]. 
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